GOÝT. DIGÝIJAÝ AUTONOMOUS P.G. COLLEGE, RAJNANDGAON

TEACHING PLAN 2022-2023

DEPARTMENT OF PHYSICS

Department of physics Teaching Plan 2022-23

M.Sc. - 1st Semester

Subject :- Mathematical physics

S.No.	Month	Lecture
1.	July	Vector space and matrices : - Linear independence, Bases, Dimensionality, Inner product, Linear, transformation matrices, Inverse matrix, Orthogonal and Unitary matrices, Eigen values and Eigen Vector, Diagonalization, complete orthogonal sets of functions,
2.	August	complex variable : Analytic function, Cauchy-Riemann condition, Cauchy integral formula, analytic function, necessary and sufficient conditions, Cauchy- Reimann equation in polar, Laplace equation; Laplace equation; Harmonic function line integral of a complex function, Derivations analytic function, singularities of an analytic function with examples
3.	September	Differential equation : - second order linear ODEs with variable coefficients, Solution by series expansion ,non - homogeneous differential equation and solution by the method of Green's function with application, Solution of second order differential equation with constant coefficient, power series solution ; Frobeniu's method
4.	October	Special function : - Legendere , Bessel , Hermite and Laguerre function with their physical applications , Generating function, Orthogonality condition , Recursion relations
5.	November	Integral Transforms : - Laplace form integral transforms, Properties of Laplace transforms Laplace transforms, First and second shifting theorems with example, Inverse Laplace Transforms, LT of derivative and integral of a function. Fourier series, FS or arbitrary period, half wave expansions partial sums, Fourier integral and transforms, Laplace transform of periodic functions, inverse Laplace theorem: Fourier Mellin theorem: properties of inverse Laplace transform, Simple Applications of fourier transform; (i) Evaluation of integrals (ii) Solution of Boundary value problems
6.	December	revision

Teaching Plan 2022-23

M.Sc. 1st Semester

Subject:- Classical Physics

S.No.	Month	Lecture
1.	July	Newtonian mechanics of one and many Particle system, Conservation law, Constraints & their classifications, Work Energy theorem open system (with variable mass) Generalized coordinates
2.	August	generalized notations, Principle of vertual work, D' Alembert's Principle and Lagrange's equations Lagrangian for a charges particle in an electromagnetic field, deduction of Hamilton's principle from D' Alembert's Principle, Deduction of Newton's second law of motion from Hamilton's principle
3.	September	Deduction of a Lagrange's equation using variational principle for non-conservative system, Application of Lagrangian formulation, Simple pendulum, Jacobi Integral: Generalized coordinates and Moment Integrals of motion, symmetries of space and time with conservation law, Principle of least action, invariance under Galilean transformations rotating frames integral forces, astronomical applications of Coriolis force.
4.	October	Hamilton's canonical equation of motion, physical significance of H, advantage of Hamiltonian approach, deduction of canonical equation from a Variational principle ,Central force definition and characteristics , two body problem , closure and stability of circular orbits , general analysis of orbits , Kepler's law and equation , principle of least action ,Hamilton's principle and characteristic function. Condition for a transformation to be canonical, Infinitesimal contact transformations, Canonical transformations , example of canonical transformation, Generating function
5.	November	Poisson bracket, Poisson theorem Angular momentum PBs, Small oscillations, Normal modes and coordinates. Rigid body dynamics- the Euler's angles, Euler's equation of motion, rate of change of vector, invariance of Poisson bracket with respect to canonical transformation, Equation of motion in Poisson bracket form, Lagrange's brackets, Relation between lagranges and Poisson bracket, Liouville's theorem
6.	December	Revision

Teaching Plan 2022-23

M.Sc. 1st Semester

Subject : - Electrodynamics and Plasma Physics

S.No.	Month	Lecture
1.	July	Electrodynamics, plasma, Maxwell's equations, vector and scalar potentials and the wave equation, Gauge transformations
2.	August	Lorentz gauge, Coulomb gauge, Green function for the wave equation, four-vectors, mathematical properties of the space-time in special relativity, matrix representation of Lorentz transformation, covariance of electrodynamics, transformation of electromagnetic fields
3.	September	Radiation by moving charges, Lienard-Wiechert potential and fields for a point charge, total power radiated by an accelerated charge- Larmor's formula and its relativistic generalization, angular distribution of radiation emitted by an accelerated charge, radiation emitted by a charge in arbitrary extremely relativistic motion, distribution in frequency and angle of energy radiated by accelerated charge
4.	October	Bremsstralung: emission from single-speed electrons, thermal Bremsstralung emission and absorption, Synchrotron radiation: spectrum of synchrotron radiation, spectral index for power law electron distribution, transition from Cyclotron to Synchrotron emission, Cherenkov radiation
5.	November	Plasma: definition, Debye shielding phenomenon and criteria for plasma, motion of charged particles in electromagnetic field ,Fundamental equations of magneto- hydrodynamics (MHD), Hydrodynamics Waves; Magneto sonic and Alfven waves, Magnetic viscosity and magnetic pressure, plasma confinement schemes
6.	December	Revision

Teaching Plan 2022-23

M.Sc. 1st Semester

Subject : - Electronic and photonic devices

S.No.	Month	Lecture
		Unipolar device: JFET, MESFET and MOSFET basic structure, working and device I-V characteristics,
1.	July	
2.	August	small signal equivalent circuit related field effect device, Microwave performance, charged coupled device (CCDs), basics structure and working, principal, MOSFET- basic device characteristics, types of MOSFET, UJT, SCR, triac operation VI characteristics of Triac, Triac rating, Application of Diac, Diac- operation, Diac V-I characteristics curve
3.	September	Special Microwave Devices: Quantum effect device, Resonant Tunneling diode, unipolar resonant tunneling transistor. Tunnel diode and backward diode-basic device characteristics, IMPATT diode and their statics and dynamic characteristics, Transfer electron device-transferred electron effect, Gunn diode, Negative differential resistance, Hot electron devices, Hot electron HBT, Real space Transfer Transistor.
4.	October	 Photonic Device: Radiative transitions and optical absorption optical cavity and feedback, LEDs: Visible LED and infrared, SC laser; Photo detectors; Photo conductor, & Photodiode, SOLAR cell, Solar radiation and ideal conversion efficiency, p-n junction solar cells, Hetero junction, Interface thin film solar cells, Basic laser structure, Threshold current density, Quantum well laser, Silicon and compound –semiconductor solar cell, Optical concentration
5.	November	 Optical Modulation and Display devices :- Optical fiber waveguides, Introduction: Optical fiber, Numerical aperture, Pulse dispersion in step index fibers, First and second generation fiber optic communication, Magneto-Optic and Acoustic-Optic effect, Materials exhibiting these properties, Non-linear Optics(self focusing, second harmonic generation) Display devices: Luminescence, Photo- luminescence, Electroluminescence, Liquid crystal display (LCD), Numeric display. Fiber - wave guides and optical communication system and networking.
6.	December	revision

Teaching Plan 2022-23

M.Sc.2nd Semester

Subject :- Quantum Mechanics – I

S.No	Month	Lecture
1.	July	Inadequacy of classical mechanics. Equation of motion of matter waves, physical interpretation of the wave function, Expectation value of dynamic quantities, probability current density: particle flux, Ehrenfest theorem
2.	August	physical Applications of Schrodinger's equation the free particles, particle in a Box, potential step, Rectangular potential barrier, Application of barrier penetration (α - decay).Schrodinger equation, one-dimensional Infinitely deep potential well, Schrodinger equation for Linear Harmonic oscillator and its solution,Eigen values, Zero point energy, Uncertainty relations
3.	September	Super position principle, general formalism of wave function, commutation relationship, representation of states and dynamical variable, Completeness of Eigen functions, Dirac-Delta function, Bra & Ket notation, Matrix representation of an operator, Harmonic oscillator and its solution by matrix method, Heisenberg equation of motion
4.	October	Angular Momentum in quantum mechanics, commutation relationship, Eigen value addition of angular momentum, Clebsch-Gordon coefficient , spherically symmetric potential in three dimensional, separation of wave equation, three dimensional square well potential and energy level the Hydrogen atom, solution of the radial equation energy level and stationary state wave function ,.
5.	November	Time-independent perturbation theory, non-degeneracy case, first order and second perturbation with the example of perturbation of an oscillation, degeneracy case, removal of degeneracy of second order, first order stark effect in hydrogen perturbed energy level, Zeeman effect without electron
6.	December	revision

Teaching Plan 2022 -23 M.Sc.2nd Semester

Subject :- Statistical Mechanics

S.No.	Month	Lecture
1.	January	Foundation of statistical mechanics , contact between statistical and thermodynamics, the classical ideal gas, entropy of mixing and Gibb's paradox, phase space of classical systemLiouville's theorem and its consequence quantum state and phase space. Elements of ensemble theory: micro canonical and grand canonical ensemble, partition functions, physical significance of statistical quantities, example of classical system energy and energy density, fluctuation and mutual correspondence of various ensembles
2.	February	Formulation of quantum statistics : Quantum mechanical ensemble theory , Density matrix , statistics of various quantum mechanical ensemble , Ex: An electronic magnetic field, System compose of indistinguishable particles. Density matrix and the partition of a system of a free particles. theory of simple gases-ideal gas in various quantum mechanical, ensembles, Maxwell-Boltzmann , Bose- Einstein , Fermi- Dirac distributions ,statistical of occupation number
3.	March	Ideal Bose and Fermi gases: Thermodynamics of black body radiation, the field of sound waves, Inertial density of sound field. Thermodynamics behavior of an ideal Bose and Fermi gas of elementary particle, degenerate Bose gas, Bose-Einstein condensation and elementary excitations in liquid helium II ,Thermodynamic behavior of an ideal Fermi gas , Magnetic behaviors of an ideal Fermi gas, the electron gas, theory of Whit Dwarf Stars
4.	April	Statistical mechanics of interaction system the method of cluster expansion classical gas . viral expansion of the equation of the state. Evaluation of viral coefficient, Landan theory of phase transition- general remark on the problem of condensation Fluctuation , thermodynamic fluctuation . Brownian motion, Einstein and Langevin theory of Brownian motion ,
5.	Мау	fluctuation dissipative theory. The Onsager relations., Unreal remark on cluster expansion Exact treatment of second viral coefficient

Department of physics Teaching Plan 2022 -23 M.Sc.2nd Semester

Subject :- Electronic

S.No.	Month	Lecture
1.	January	<i>Operational amplifier</i> :-Basic Op-amp. Ideal operational Amplifier Differential amplifier, Practical inverting Op-amp, the emitter coupled. difference amplifier , transfer characteristics of a diff. Amplifier, An example of an AC Op-amp, offset error voltage and currents, measurement of Op-Amp. Parameters, frequency response of an Op-Amp, Dominant-pole compilation. Linear analogsystem : basic Op-Amp Application , Analog integration and differentiation, Electronic Analog computation. Non-linear analogsystem, comparators, wave form generator Schmitt Trigger.
2.	February	<i>Combinational Logic</i> – Basic Logic gate : OR ,AND , NOT gates, NOR and NAND gates Boolean algebra , De-Morgan's theorem , exclusive OR gate , Decoder / Demultiplexer , Date Selector/multiplexer –.encoder , TTL circuit. Arithmetic-Logic units , adder , Sequential Logic flip-flop : R-S Flip-Flop, J-K Flip-Flop level clocking, Edge triggered Flip flop D Flip flop JK , Flip flop J.K master slave Resisters buffer shift and control shift resisters , ripple synchronous & ring counter , tri- resisters Memories: RAM , ROM , PROM , EPROM .
3.	March	<i>Microprocessors</i> :- Evolution of microprocessor, organization of a microcomputer, programming of microprocessor, Basic concept, data representation, binary number system, Floating point notation, organization of Intel 8085. instruction set of 8085. Programming with 8085. Assembly language programming, the stack, subroutines CPU of a microprocessor, timing and control, system timing and interrupt timing of 8085, resistor in 8085, interfacing memory and I/O device a preliminary ideas.
4.	April	Instruction set of 8085 type of instructions- Data transfer group ,Arithmetic Logic , branch group , stack I/O machine control group , addressing mode of Intel 8085 , example of Assembly language programs in 8085 , summing of two 8-bit number to result a 16-bit number , summing two 16-bit number.
	יייאר	8085 interrupt. 8085 recorded interrupts, microprocessor application designing
5.	May	scanned display, interfering a matrix keyboard, Memory design

Department of physics Teaching Plan 2022 -23 M.Sc.2nd Semester

Subject :- COMPUTATIONAL PHYSICS AND COMPUTER PROGRAMMING

S.No.	Month	Lecture
1.	January	Method of determination of zeroes of linear and non linear algebraic equation and transcendental equation, convergence of solution, Solution of simultaneous linear equations, Gaussian elimination, pivoting, iterative method matrix inversion, Eigen value and Eigen vector of matrices, power and Jacobi method. factorization method, givens method, house holders methods partition method
2.	February	Finite differences, interpolation with equally spaced and unevenly spaced point, Gauss Interpolation, curve fitting, polynomial least squares and cubic spline fitting, Numerical differentiation and integration, Newton-cotes formulae, Gauss method, Sterling formula, Law containing three constant. Error- error estimate.
3.	March	Numerical solution of ordinary differential equation, Run's method, Modified Euler method, Euler and Runga-Kutta methods, predictor-corrector method, Milne's and Adam's predictor and Picard's method, corrector method, taylor series method, stability analysis.
4.	April	Elementary information about digital computer principle, compilers, interpreters, subroutine, Computer Representations of number, Floating points presentations of number, computer calculations, Numerical method using C language, An overview of C features, Example;-Multiplications of matrices, Gauss- Eliminations method, Gauss –Jordan method, Factorizations method, Gauss –Seidal iterations method, Power method, Method of Least squares, Method of averages,
5.	Мау	Method of moments Newton forward interpolations method, Langranges interpolations formula, Derivatives using forward differences formula

Department of physics Teaching Plan 2022 -23 M.Sc.3rd Semester

Subject :- Quantum Mechanics -II

S.No.	Month	Lecture
1.	January	Variation method; WKB approximation; approximation solution, solution near a turning point, turning point, connection at the turning point, Expectation value of energy; Application to excited states; Ground state of He-atom; Vander walls interactions energy level of a potential well and quantization rule ,Adiabatic and sudden approximations
2.	February	differential scattering cross section and total scattering cross section; Wave mechanical picture of scattering . Scattering amplitude; Green functions and formal expression for Scattering, amplitude Scattering by spherically symmetric potentials; Partial waves analysis, asymptotic behaviors of Partial waves and phase shifts; Scattering by a perfectly rigid sphere and by square well potential; Scattering by Coulomb potential,. Parabolic coordinate confluent hyper geometric function
3.	March	Time dependent perturbation theory, interaction picture, first order perturbation; Harmonic perturbation; Fermi's golden rule; Ionization of a H atom, density of final state, Transition probability for absorption and induced emission; Electric dipole and forbidden transitions; selection rules Symmetric and ant symmetric wave functions Relativistic quantum mechanics, Relativistic quantum theory the Klein - Gorden equation, plain wave solution, The Dirac equation for a free particle, matrices alpha and beta, charge density and current density, Lorentz covariance of the Dirac equation, Spin angular momentum; Dirac equation for central field; Dirac particles in electromagnetic fields and significance of the negative energy state.
4.	April	Relativistic quantum mechanics , Relativistic quantum theory the Klein - Gorden equation ,plain wave solution, The Dirac equation for a free particle ,matrices alpha and beta, charge density and current density, Lorentz covariance of the Dirac equation, Spin angular momentum.
5.	Мау	Dirac equation for central field; Dirac particles in electromagnetic fields and significance of the negative energy state.

Department of physics Teaching Plan 2022 -23 M.Sc.3rd Semester

Subject :- Atomic & Molecular Physics

S.No.	Month	Lecture
1.	July	Somerfield theory of hydrogen atom, application of quantization, quantization of elliptical orbits, Somerfield elliptical orbits, relativistic correction to Somerfield elliptical orbits,
2.	August	. fine structure of H alpha line, fine structure of He ⁺ line, selection rule for azimuthally quantum number, magnetic moment of atom and land's g factor, Larmour's theorem, Quantum States of one electron atoms; Atomic orbital; Hydrogen Spectrums Spin-orbit (1-s) interaction energy, fine structure 0f Hydrogen Spectrums including (1-s) interaction and relativistic correction, Spectra of Alkali element, doublet fine structure in alkali Spectra, intensity rules
3.	September	Pauli Exclusion principle, quantum mechanical treatment of fine structure, Pauli's principle Ground state(basic level of different element) two electron system, interaction energy in L-Sand J-Jcoupling. fine structure, Hyper fine structure, line broadening mechanisms (general ideas), Normal and anomalous Zeeman Effect, relativistic correction, interpretation of hyper fine structure, quantum mechanical treatment of hyper fine structure
4.	October	Vector models of one electron system in a week magnetic field, magnetic moment of a bound electron, magnetic interaction energy selection rules, Zeeman effect of principle series doublet. Zeeman effect, Paschen Back effect, Stark effect in Hydrogen, orbital model, weak and strong effect in Hydrogen, landau's factor for two valence electron system, (in L-S and JJ coupling) linear stack effect (hydrogen atom) Zeeman effect in two electron system
5.	November	Types of molecules; Diatomic linear symmetric top; asymmetric top and spherical top molecules; Rotational spectra of diatomic molecules as a rigid rotator- Energy levels and spectra of non rigid rotator, determination of the inter nuclear distance (bond length) and momentum of inertia, isotopes effect in rotational spectra, isotope effect in vibrational bands, application of vibrational spectroscopy, Vibrational energy of diatomic molecule; Diatomic molecule as a simple harmonic oscillator, P,Q and R branches (qualitative).
6.	December	revision

Department of physics Teaching Plan 2022-23 M.Sc.3rd Semester

Subject :- Solid State Physics-I

S.No.	Month	Lecture
1.	July	Electrons in Solid and Electronic properties - Energy band : nearly free electron model ,origin of energy gap and its magnitude, Bloch function , Kronig-penny model
2.	August	Wave equation of electron in periodic potential restatement of Bloch theorem ,crystal moment of an electron , kronig-penny model in reciprocal space empty lattice Approximation , Approximation solution near zone boundary. Number of orbital in a band, metals and insulator.
3.	September	Fermi surface and metals- free electron Gas in three dimension ,construction of Fermi surface, nearly free electron, hole open orbits Calculation of energy bands. Tight binding, Wigner -Seitz, Cohesive energy, pseudo potential methods, Quantization of orbits in a magnetic field, de Hass van Alphen Effect, External orbits, Fermi surface of copper
4.	October	Crystal vibration and thermal properties Lattice dynamics in diatomic lattice: two atoms per primitive basis, optical and acoustic modes, quantization of elastic waves, phonon momentum, inelastic neutron scattering by phonon. , Anharmonic crystal interactions-thermal expansion, thermal conductivity, thermal resistivity of phonon gas, unklapp processes, imperfections
5.	November	Electron-Phonon interaction-superconductivity Experimental survey: occurrence of superconductivity, Meissener effect, heat capacity, energy gap, , isotope effect, London equation, Coherence length, Cooper pairing due to phonons, BCS theory of superconductivity, BCS ground state, flux quantization of superconducting ring, duration of persistent currents, Type II superconductors, Vertex states, and Josephson superconductor tunnelling, DC/AC Josephson effect.
6.	December	revision

Department of physics Teaching Plan 2022-23 M.Sc.3rd Semester

S.No.	Month	Lecture
1.	July	Microwave devices: klystron (reentrant cavities, velocity modulation, bunching process, output power and beam loading, efficiency of klystron, mutual conductance of klystron amplifier, power required to bunch the electron beam);
2.	August	magnetrons and traveling wave tube; velocity; modulation. Basic principles of two cavity Klystrons and reflex klystrons; principle of operation of magnetrons; helix travelling wave tube; wave modes, slow wave structure, amplification process convention current, axial electric field, wave mode, coupled cavity travelling-wave tube(physical description, principal of operation, microwave characteristic, high efficiency and collector voltage depression
3.	September	 Microwave guides and components (Wave Modes):- (A) Rectangular wave guides: - power transmission in rectangular wave guide, power losses in rectangular wave guide, solutions of wave equation in rectangular coordinates, TE Modes; TM Modes; excitation of modes in rectangular wave guides, characteristic of standard rectangular wave guide. (B) Circular wave guides:-solutions of wave equations in cylindrical coordinates ; TE Modes; TM Modes; TEM Modes; excitation of modes in circular guides, power transmission in circular wave guide or coaxial line, power losses in circular wave guide or coaxial lines.
4.	October	Transferred electron devices:-Gunn effect Principle of operation; modes of operation; read diode; IMP ATT diode; TRAP ATT diode, baritt diode. Computer Communications:- Types of network ,design feature of a communication network; advantage and disadvantage Example –TRMNET,ARPANET ISDN LAN, FDMA, TDMA, CSMA.
5.	November	RADAR:-RADAR Block diagram and operation RADAR frequency; RADAR range equation and its derivation, minimum detectable signal; receiver noise; signal to noise ratio; Probability density function . Integration of RADAR pulse; Satellite Communications:-Orbital Satellite; Geostationary satellites; Orbital Pattern, look angle, satellite system; orbital spacing
6.	December	revision

Subject :- Electronics-I

Department of physics Teaching Plan 2022 -23 M.Sc.4th Semester

Subject :- NUCLEAR AND PARTICAL PHYSICS

S.No.	Month	Lecture
1.	January	NUCLEAR INTERACTION :-Nucleon –nucleon interaction ; Two - Nucleon System of the Ground State of the Deuteron ; Tensor force; Nucleon-nucleon Scattering at Low Energies, Scattering length; Effective Range Theory in n-p Scattering ; Spin Dependence of Nuclear force; Charge independence and charge symmetry of nuclear force; Iso-spin formalism, exchange forces; meson theory of nuclear force and the Yukawa interaction. Saturation of Nuclear force, Isotopic spin formalism
2.	February	NUCLEAR DECAY:- Beta decay: Fermi's theory for Beta decay; shape of beta spectrum; total decay rate angular momentum and parity selection rules; comparative half-lives; allowed and forbidden transitions selection rules; parity violation two component theory of neutrino decay; Detection and properties of neutrino; Gamma decay: Measurement of Gamma ray energies Multipole transition in nuclei angular momentum and parity selection rules; Internal conversion, Nuclear isomerism. Internal pair creation
3.	March	NUCLEAR MODEL :- Liquid drop model, Semi-Empirical Mass Formula; Bohr-Wheeler theory of fission; Shell Model; Experimental evidence for shell effects; Single particle shell model: Spin-Parity prediction, Prediction of ground state term, spin-orbit interaction and magic numbers; Analysis of shell model prediction; Magnetic moments and Schmidt lines; Collective model
4.	April	ELEMENTARY PARTICAL PHYSICS :- Classification of fundamental interaction; Classification of Elementary particles; Symmetry, Conservation law:Exact and Approximate, Lepton's and Hadrons, Special Symmetries: SU(2) and SU(3) multiple and their properties; Quark model; Coloured Quarks,
5.	Мау	Isospin of quarks, Heavy quark effective theory, properties of quarks, Q-equation and threshold energies; Direct and compound nuclear interaction

Department of physics Teaching Plan 2022 -23 M.Sc.4th Semester

Subject :- LASER PHYSICS AND APPLICATIONS

S.No.	Month	Lecture
1.	January	Laser characteristics :- Spontaneous and stimulated emission; Einstein's quantum theory of radiation; Beam characteristics :- Directionality, intensity, coherence and mono chromaticity, kinetic of optical absorption, line broadening mechanism, Basic principle of lasers population inversion; laser pumping; two & three level laser system; resonator; Q-factor; losses in cavity; threshold condition ; quantum yield
2.	February	Laser system :- Solid state laser- the ruby laser; Nd :YAG Laser, ND-Glass laser, semiconductor laser; features of semiconductor laser; intrinsic semiconductor laser; Gas laser neutral; atom gas laser; He-Ne laser; molecular gas laser CO2 laser; Liquid laser; dye lasers and chemical laser. Electro ionization laser, Gas dynamic laser, Copper vapor laser, Ion laser, metal vapor laser.
3.	March	Multi-Photon processes :- multi quantum photoelectric effect; theory of two-photon process; three-photon process; second harmonic generation; parametric generation of light ; Parametric light Oscillator, frequency up conversion Laser spectroscopy; Rayleigh and Raman scattering Stimulated Raman effect; Hyper- Raman effect;(Classical treatment), Coherent anti-stokes Raman Scattering; Photo-acoustic Raman spectroscopy. Spin flip Raman laser, Brillouin scattering.
4.	April	Laser application :- isotope separation, thermonuclear fusion; laser application in chemistry , biology astronomy engineering and medicine, communication by laser; Ranging fiber optics communication optical fiber. Absolute rotation of earth.
5.	Мау	Advanced in laser physics – production of giant pulse, Mechanical shutter, Electro optical shutter, shutter using saturable dyes .Q-switching, giant pulse dynamics, and laser amplification, mode locking and pulling

Department of physics Teaching Plan 2022-23 M.Sc.4th Semester

Subject :- SOLID STATE PHYSICS – II

S.No.	Month	Lecture
1.	January	Dielectric and ferroelectrics – Polarization, dielectric constant macroscopic electric field, depolarization field ,E1; local electric field at an atom, Lorentz field E2, fields of dipoles inside cavity E3; dielectric constant polarizability and electronics Polarizability ; Ferro-electric crystal classification dissipative transition, Landau theory of phase transition, first and second order transition, anti ferro-electricity, ferro-electric domain , Piezoelectricity , Thermodynamic theory of the Ferro electric transition, second order transitions, first order transistion
2.	February	Ferromagnetism and anti ferromagnetism –Ferromagnetism order, curie point and exchange integral, temp. dependence of saturation magnetization at absolute zero; magnons, quantization of spin wave, thermal excitation of magnon; neutron magnetic scattering, ferromagnetic order, Curie temp and susceptibility of ferro- magnetic, iron garnets Anti ferromagnetic order, susceptibility below Neel temp, Anti ferromagnetic magnon, ferromagnetic domains. Magnon in ferro magnets, Neel model of ferrimagnetism, Neel model of Antiferrimagnetism.
3.	March	Magnetism – Diamagnetism, Langevin theory of paramagnetic, Langevin theory of Diamagnetism, quantum theory of paramagnetic rare earth ions, iron group ions. Paramagnetism , temp. dependent paramagnetism , Pauli paramagnetismPlasma optics – transverse optical modes in plasma , longitudinal plasma oscillationPlasmons:- electrostatics screening and screened Coulomb potential , Mott metal insulator transition, screening and phonons in metal
4.	April	Defects- lattice vacancies Schottky and Frenkel point defect, colour center, f center, formation of F center, Energy level of F center and magnetic properties, F' center, V center, line defect Shear strength of single crystal.
5.	Мау	Dislocation – edge and screw dislocation burger vector, Stress field of dislocation Low angle grain boundaries, Role of dislocation in plastic deformation and crystal growth mechanism of plastic deformation in solid

Department of physics Teaching Plan 2022-23 M.Sc.4th Semester

Subject :- ELECTRONICS

S.No.	Month	Lecture
1.	January	Digital Communication – Pulse modulation system; Sampling theory- Low- Pass and Band-Pass signals; PAM Channel BW for a PAM signals; Natural Sampling ; Flat-top sampling; Signal Recovery through holding; Quantization of signal ;Quantization error; Differential PCM; Delta Modulation; Adaptive Delta Modulation; CVSD, pulse code modulation, electrical representation of binary digit, vocodes (voice codes), channel vocodes, linear prediction codes.
2.	February	Mathematical Representation of Noise-Source of Noise; Frequency Domain; Representation of Noise; Effect of filtering on the Probability; Density of Gaussian Noise; Spectral Component of Noise; Effect of a filter power spectral; density of Noise; Super Position of Noise; Mixing involving Noise; Linear filtering; Noise Bandwidth, Quadrature Component of Noise; Power Spectral Density of ns(t), ns(t) and their time derivative, representation of noise using orthonormal co ordinates ,.irrelivant noise components
3.	March	Digital Modulation Technique – BPSK; DPSK; QPSK; <u>PSK; FSK;</u> Data Transmission – Base band receiver probability of error; Optimum filter white-noise; Matched filter and probability of error; Coherent reception; Correlation ; PSK; FSK; Non Coherent detection of FSK, duo binary encoding, A comparison of narrow band system FM system, partial response signaling, amplitude modulation of partial response signal.
4.	April	Noise in pulse-code and Delta Modulation System- PCM Transmission; Calculation of Quantization noise; output signal Power; Effect of Thermal Noise; output signal to Noise Ratio in PCM; DM; Quantization of Noise in DM, Output signal power; DM output signal to Quantization Noise Ratio;.
5.	Мау	Effect of thermal Noise in Delta Modulation ; output signal to noise ratio in DM, comparison of PCM and DM , the space shuttle ADM

Head of The Physics Deptt. Govt. Digvijay College RAJNANDGAON (C.G.)

Teaching plan 2022-23

semester 1st and 2nd

Month	lecture
July	Cartesian, Cylindrical and Spherical Coordinate System. Inertial and non – inertial frames of reference ,uniformly rotating frames .Carioles force and its application .Motion under a central force , kapler's laws . Effect of centrifugal and carioles force due to earth rotation
August	. Center of mass lab and CM Farms Of Reference Motion of CM of system partial subject to external force elastic and inelastic collision in one and two dimension. Conservation OF Linear AND Angular Momentum conservation of energy. Rigid body motion, rotation motion, moment of inertia and their products, principal moments and axes Introductory idea of Euler's equations.
September	Potential well and periodic oscillation, case of harmonic small oscillations, differential equation and its solution, kinetic and potential energy, examples of simple harmonic oscillations, spring and mass system, simple and compound pendulum, tensional pendulum Bifilar oscillations, Helmholtz resonator, LC circuit, vibrations of a magnet, oscillations of two masses connected by a spring.
October	Superposition of two simple harmonic motions of the same frequency, Lisaajuous figures, case of different frequencies. Damped harmonic oscillator, power dissipation, quality factor, examples, driven (forced) harmonic oscillator, transient and steady states, power absorption, resonance. Elasticity, stress and strain, elastic limit, Hooke's law, modules of rigid body, Poisson ratio
November	bulk modules, relation connecting different classic constant, twisting couple of a cylinder (solid and hallow), bending moments, cantilever, young modules by banding of beam. Viscosity, Ponselle's equation of liquid flow through a narrow tube, equations of continuity. Euler's equation, Bernoulli's theorem, viscous fluids, streamline and turbulent flow. Ponselle's law. Coefficient of viscosity, stokes low, stokes aw, surface tension and surface energy, molecular interpretation of surface ension, angle of contact wetting.

-DSC 1 A. MECHANICS

O Scanned with OKEN Scanner

RAIN

Head of The Physics Deptt Gov! College

1:.G.)

2349	77 07-08-2023	CHUNESHWAR KUMAR	SHRIRAM SAHU	1
2349	78 07-08-2023	UMESH KUMAR DEWANGAN	CHANDRABHUSHA N DEWANGAN	1
2349	79 07-08-2023	NAGESHWAR	RAJENDRA PRASAD	1
23498	30 07-08-2023	AARTI	SHAILENDRA GUPTA	1
23498	81 07-08-2023	POOJA VERMA	DUMAN LAL VERMA	1
23498	2 11-08-2023	NIRJALA VERMA	AWADH RAM	1
23498	3 11-08-2023	PRANAY TANDAN	KRISHNA KUMAR TANDAN	1
234984	4 12-08-2023	KETAN MESHRAM	DHANRAJ MESHRAM	-1
234985	12-08-2023	AYUSH JAISWAL	PRADEEP JAISWAL	1
234986	14-08-2023	NIKHIL MANIKPURI	SARWESHVAR MANIKPURI	- 1
234987	14-08-2023	BHOOMIKA	PRATAP SAHU	1
234988	14-08-2023	MUSKAN YADAV	GHANSHYAM YADAV	1
234989	09-09-2023	AASMA KHAN	RASID KHAN	1
234990	06-09-2023	PANKAJ KUMAR SAHU	NUMESHWAR SAHU	1
234991	27-09-2023	AARYAN SHARMA	RAJESH KUMAR SHARMA	1

Month	lecture
January	Vector Analysis: Review of vector algebra (Scalar and Vector product) gradient, divergence, Curl and their significance, Vector Integration, Line surface and volume integrals of Vector fields, Gauss divergence theorem and Stoke's theorem of vectors, Network theorem. Electrostatics: Electrostatic Field, electric flux, Gauss's theorem o electrostatics. Applications of Gauss theorem
February	Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser.
March	Magnetism: Magnetostatics: Biot-Savart's law & its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl o magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability magnetic susceptibility. Brief introduction of dia-, para- and ferro-magnetic materials.
April :	Electromagnetic Induction: Faraday's laws of electromagnetic induction Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field. Maxwell's equations and Electromagnetic wave propagation: Equation o continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization

Head of The Physics Deptt Govt. Digginary College RAJNANDGAON (C.G.) 1

1	1		1	1	-	1	1	1	1	1		1	1	-	1	1		1		1	1		1	R 1	R 1	1		1		-	1 1
LOKURAM	RAJENDRA SHILARE	MOHAN BADGE	TIKAMDAS MARKANDE	SANJU SINGH	SHIVRAM PRASAL	BIHARI LAL SAHU	DAKWAR VERMA	RAVINDRA PARAKH	SHANKAR BHAWANI	SEVAK RAM VERMA	NAND KUMAR NISHAD	LILARAM PATEL	VASUDEV SAHU	IAL JI	DARASINGH NISHAD	DHANRAJ	RUPENDRA SAHU	GOVARDHAN VERMA	HEMANT KUMAR SAHU	KUNDAN GENDRE	BIRENDRA SAHU	NARENDRA DEWANGAN	MAHENDRA KUMAR	MUKESH SONBOI	SIYARAM PARKA	MAROTI RAMBHAD	MR. SACHIN KUMAR	TRIBHUVAN	NIMJE	NIMJE DEVLAL	NIMJE DEVLAL SHIV KUMAR RAJPUT
YOGITA	SHIVAKSH SHILARE	AMAN BADGE	VANSHRAJ MARKANDE	SAGAR SINGH	DAKESHWAR KUMAR SAHU	KESAR SAHU	POONAM VERMA	MAYANK PARAKH	LUCKEY DHANKAR	AJAY KUMAR VERMA	PRAMOD NISHAD	DEMAN PATEL	VIKAS SAHU	KALYANI	RAMNARAYAN NISHAD	ISHU KUMAR	MITHLESH SAHU	RENUKA VERMA	HEMLATA SAHU	MUSKAN GENDRE	DHEERAJ KUMAR SAHU	YOGESH KUMAR DEWANGAN	DEVENDRA KUMAR	AMAN SONBOIR	PRIYA PARKAR	VANSH KUMAR RAMBHAD	ADITI NIRMALKAR	TIJIL NIMJE		GULSHAN KUMAR	GULSHAN KUMAR TAMANNA RAJPUT
234944 18-07-2023	234945 19-07-2023	234946 19-07-2023	234947 19-07-2023	234948 19-07-2023	234949 19-07-2023	234950 22-07-2023	234951 22-07-2023	234952 22-07-2023	234953 22-07-2023	234954 22-07-2023	234955 22-07-2023	234956 22-07-2023	234957 22-07-2023	234958 22-07-2023	234959 22-07-2023	234960 22-07-2023	234961 25-07-2023	234962 25-07-2023	234963 25-07-2023	234964 20-07-2023	234965 01-08-2023	234966 01-08-2023	234967 01-08-2023	234968 01-08-2023	234969 02-08-2023	234970 02-08-2023	234971 03-08-2023	234972 04-08-2023		234973 03-07-2023	234973 03-07-2023 234974 07-08-2023

Teaching plan BSc 2nd year

PAPER-I

THERMODYNAMICS, KINETIC THEORY AND STATISTICAL

PHYSICS

Paper-II

WAVES, ACOUSTICS AND OPTICS

Month	Lecture
July	 Paper1- The laws of Thermodynamics: The zeroth law, concept of path function & point function, various indicator diagrams, work done by & on the system, first law of thermodynamics, internal energy as a state function, reversible & irreversible change, carnot theorem & the second law of thermodynamics, different versions of second law, Clausius theorem inequality, Paper2 Waves in media: Speed of transverse waves on a uniform string, speed of longitudinal waves in a fluid, energy density & energy transmission in waves, typical measurement, waves over liquid surface: gravity waves & ripples, Group & phase velocity, their measurement. Harmonics & the quality of sound; examples: production & detection, ultrasonic & infrasonic waves applications.
August	 Paper1 Entropy, change of entropy in simple cases: (i) Isothermal expansion of an ideal gas, (ii) Reversible isochoric process, (iii) Free adiabatic expansion of an ideal gas. Entropy of the Universe, Principle of increase of entropy, the thermodynamic scale of temperature, it's identity with the perfect gas scale, impossibility of attaining the absolute zero, third law of thermodynamics. Paper2 Reflection, refraction & diffraction of sound: Acoustic impedence of a medium, percentage reflection & refraction at a boundary, impedence matching for transducers, diffraction of sound, principle of sonar system, sound ranging. Fermat's principle of extremum path, the aplantic points of a sphere & other applications. Cardinal points of an optical system, thick lens & lens combinations,
September	 Paper1 Thermodynamic relationship: Thermodynamic variables, extensive & intensive, Maxwell's general relationships, application to Joule-Thomson cooling & adiabatic cooling in a general system, Vander Waals gas, Clausius- Clapeyron heat equation. Thermodynamic potential & equilibrium of thermo dynamical system, relation with thermo dynamical variables, cooling due to adiabatic demagnetization, production & measurement of very low temperatures, Paper2 Lagrange equation of magnification, telescopic combinations, telephoto lenses. Monochromatic aberrations & their reductions; aspherical mirrors & Schmidt corrector plates, aplanatic points, oil immersion objectives, meniscus lens. Optical instruments: Entrance & exit pupils, need for a multiple lens eyepiece, common types of eyepieces: (Ramsdon & Huygen's eyepieces)

Head of The Physics Deptt Govt. Digvijay College RAJNANDGAON (C.G.)

1	T	-	1	-	-		. 1	1	1	1	1	1	1	1	1	1	1	1	1	-	1	-	1	-	1	-	-	-	-	_	-	_
SHATRUHAN RAM VADAV	JAGDISH	DAMAN DAS	SANTOSH VERMA	CHETAN KUMAR Sonboir	SHIV KUMAR SONI	NANHERAM SAHU	TUKARAM	BEDAM RAM	PATROHAN SAHU	MURLI MANOHAR VERMA	ALAKHRAM DHANKAR	LUKESH SAHU	MIRGU RAM JADE	HIRURAM SAHU	DEVENDRA	LEKHRAM SAHU	MAHESH SINHA	RADHECHARAN	KAMLESH SAHU	KAMLESH SAHU	JAGDISH SONI	NARENDRA ROY	DOMAN DEWAGAN	VINOD KUMAR	PILESH SAHU	ATMA RAM RATRE	SURESH KUMAR	KRISHNA KUMAR	ITAMBER	1UKESH KUMAR	EWADAS SAHU	AROTTAM
DIMPAL YADAV	JUGAL KISHOR	DEVID DAS	DUSHYANT VERMA	HARSH KUMAR SONBOIR	JAY KUMAR SONI	OMESHWARI SAHU	LEKHRAM	FULCHAND	JEET KUMAR SAHU	MAYANK VERMA	KARAN ALAKHRAM DHANKAR	BHUMIKA SAHU	RAHUL KUMAR JADE	SIDDHARTH	PUSHPAM KUMAR	CHANCHAL SAHU	TUSHAR SINHA	NAMRATA	BHUMIKA SAHU	JAYA SAHU	GOVIND KUMAR SONI	PRIYANSHU ROY	LOKESH KUMAR	вноомі	ARYA SAHU	ASHISH RATRE	SIJAL KUMAR SAHU	KUNAL	DHARAM	DEMAN KUMAR	DIGESHWAR SAHU	BEN KUMARI
234911 13-07-2023	234912 13-07-2023	234913 13-07-2023	234914 13-07-2023	234915 13-07-2023	234916 13-07-2023	234917 13-07-2023	234918 13-07-2023	234919 13-07-2023	234920 14-07-2023	234921 14-07-2023	234922 14-07-2023	234923 14-07-2023	234924 14-07-2023	234925 14-07-2023	234926 15-07-2023	234927 15-07-2023	234928 15-07-2023	234929 18-07-2023	234930 18-07-2023	234931 18-07-2023	234932 18-07-2023	234933 18-07-2023	234934 18-07-2023	234935 18-07-2023	234936 18-07-2023	234937 18-07-2023	234938 18-07-2023	234939 18-07-2023	234940 18-07-2023	234941 18-07-2023 1	234942 18-07-2023 1	234943 18-07-2023 1

October	Paneri Blackhodu meli ti s
Uctober	 Paper1 Blackbody radiation: pure temperature dependence, Stefan-Boltzmann la pressure of radiation, special distribution of BB radiation, Wien's displacement la Rayleigh-Jean's law, the ultraviolet catastrophe, Plank's quantum postulat Plank's law, complete fit with experiment. Maxwellian distribution of speeds in ideal gas: distribution of speeds & of velocities, experimental verification distinction between mean, r.m.s. & most probable speed values, Doppl broadening of spectral lines. Paper2 Interference of light: The principle of superposition, two slit interference coherence requirement for the sources, optical path retardations, lateral shift fringes, Rayleigh refractometer, Localised fringes; thin films. Haldinger fringes of equal inclination,
	Paneri Transport phonomono in grant and a little
vovenijer	collision cross sections estimates of molecular diameter & mean free path & collision cross sections estimates of molecular diameter & mean free path , transport of mass, momentum & energy & interrelationship, dependence on temperature & pressure. Liquification of gases: Boyle temperature & inversion temperature, principle of regenerative cooling & of cascade cooling, liquification of hydrogen & helium, refrigeration cycles, meaning of efficiency Paper2 Michelson interferometer, its application for precision determination of wavelength, wavelength difference & the width of spectral lines, Twyeman- Green interferometer & its uses, intensity distribution in multiple beam interference, Tolansky fringes, Fabry-Parot interferometer & etalon.
December	Paper1. The statistical basis of thermodynamics: Probability & thermodynamic probability, principle of equal a priori probabilities, statistical postulates, concepts of Gibb's ensemble, accessible & inaccessible states, concept of phase space, canonical phase space, Gamma phase space & μ phase space, equilibrium before two systems in thermal contact, probability & entropy
	Paper2 Fresnel half-period zones, plates, straight edge, rectilinear propagation, fraunhofer diffraction: diffraction at a slit, half-period zones, phasor diagram & integral calculus methods, the intensity distribution, diffraction at a circular aperature & a circular disc, resolution of images, Rayleigh criterion, resolving power of telescope & microscopic system. Diffraction gratings: diffraction at N parallel slits, intensity distribution,
January	 Paper1 Boltzmann entropy relation, Boltzmann canonical distribution law & it's applications, law of equipartion of energy, transition to quantum statistics: 'h' as a natural constant & it's implications, cases of particle in a one dimensional box & on dimensional harmonic oscillator. Indistinguishability of particles & it's consequences, Bose-Einstein & Fermi-Dirac conditions, concept of partition function Paper2 plane diffraction grating, reflection grating & blazed gratings, Concave grating & different mountings, resolving power of a grating & comparison with resolving powers of prism & of Fabry-Parot etalon. Double refraction & optical rotation: refraction in uniaxial crystals, phase retardation plates, double image prism, rotation of plane of polarisation, origin of optical rotation in liquids & in crystals.

2

١ ...

١

Head of The Physics Deptt Govt. Digvijay College RAJNANDGAON (C.G.)

1	1	1		1	1.00	1		1	1	1	1	1		1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1
LOKESH VERMA	DAUVA RAM	ANAND RAM	RAJESH KUMAR SAHU	ALAKH RAM KUNIAM	SAHAJ RAM	NAGENDRA VAISHNAV	YOGESHWAR PRASAD	RAMESHWAR	NANDKUMAR	RAMKUMAR VERMA	KRIPA RAM	DEVSHARAN	AKNATH SAHU	KHEMAN	DURGESH KUMAR SAHU	MOHAMMAD SALIM OURESHI	JITENDRA KUMAR	PALTU RAM	SUNIL KUMAR	LEELADHAR	TRILOKI	HIRAMAN LAL PATEL	RAJENDRA KUMAR	IAGRIT DAS SAHU	DANI DAS SAHU	PREMLAL SAHU	ANUP	IEETLAL JOSHI	ANJU YADAV	HOVA RAM	LAJESH DEWANGAN	ILAK RAM EWANGAN
TAMSHAN VERMA	VIVEK KUMAR SAHU	NIKHIL KUMAR	DEEPAK KUMAR SAHU	VARUN KUMAR	HIRAMAN	YASHASWI VAISHNAV	VIDHI DEWANGAN	KAJAL JAGDALLE	ANJU DEWANGAN	PRAVIN KUMAR VERMA	PRADEEP KUMAR	NAVEEN KUMAR	VEDPRAKASH SAHU	DEVWRAT	TARIKA SAHU	NIDA FATIMA	DIPTI	DEVIKA VERMA	ROHAN KUMAR	DRAUPATI	AUSHPA	MANISH KUMAR PATEL	LAKESH SAHU	PUSHPENDRA KUMAR	DISHANT SAHU	VEDPRAKASH SAHU I	CHANDAN DEWANGAN	KAMESH KUMAR JOSHI J	KANHA YADAV S	REKHCHAND C	MUKTA DEWANGAN B	SUDHIR DEWANGAN T
234878 05-07-2023	234879 05-07-2023	234880 06-07-2023	234881 06-07-2023	234882 08-07-2023	234883 08-07-2023	234884 08-07-2023	234885 08-07-2023	234886 10-07-2023	234887 10-07-2023	234888 10-07-2023	234889 10-07-2023	234890 10-07-2023	234891 11-07-2023	234892 11-07-2023	234893 11-07-2023	234894 11-07-2023	234895 12-07-2023	234896 12-07-2023	234897 12-07-2023	234898 12-07-2023	234899 12-07-2023	234900 12-07-2023	234901 12-07-2023	234902 12-07-2023	234903 12-07-2023	234904 13-07-2023	234905 13-07-2023	234906 13-07-2023	234907 13-07-2023	234908 13-07-2023	234909 27-06-2023	234910 13-07-2023

& Fermi-Dirac statistics & Fermi-Dirac statistics . statistics to M.B. statistics, lication of FD statistics to e length & coherence time, it, spontaneous & induced ion, Types of Laser: Ruby lography & non linear & generation of	The Physics Deptt. Digvijay College VANDGAON (C.G.)	
of Maxwell-Böltzmann, Bose-Einstein of Maxwell-Böltzmann, Bose-Einstein I partition function, limits of B.E. & F.D. statistics to black body radiation , app metal. em: purity of a spectral line, coherenc em: purity of a spectral line, coherenc of a source, Einstein's A & B coefficier metal. em: purity of a spectral line, coherenc metal. em: purity of a spectral line, coherenc metal. em: purity of a spectral line, coherenc metal. em: purity of a spectral line, coherenc em: purity of a spectral line, coherenc metal. em: purity of a spectral line, coherenc metal. em: purity of a spectral line, coherenc em: purity of a spectral line, coherenc of a source. Einstein's A & B coefficier lion's for laser action; population invers miconductor lasers. ser: Application in communication, Hc ser: Application in communication, Hc ion P including higher order terms in F	EQUE Governmenter	
FebruaryPaper1 derivationFebruaryPaper1 derivationapplication of BEfree electron in aapplication of BEfree electron in aPaper2 Laser systspatial coherenceemissions, conditlaser, He-Ne & seApplications of laoptics. (polarizatharmonics).		